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Abstract

This paper deals with the mechanisms in kinematically and statically indeterminate reticulated systems.
Knowledge of length variation amplitude for members in association with an assigned mechanism allows

determination of mechanism order. This is a fundamental characteristic of these systems, mainly for stability
considerations. We submit on one part, simple tests allowing distinction between ``order one mechanisms'' and
mechanisms of higher order, and on the other part an algorithm giving access to order exact value for all

mechanisms associated with a given reticulated system. With this algorithm, order one mechanisms and higher order
mechanisms are identi®ed. Simple examples are given in the text and illustrate these aspects. In conclusion, we
submit a stop criterion for the algorithm which gives access to the ®nite mechanisms for most of constructive

reticulated systems. 7 2000 Elsevier Science Ltd. All rights reserved.

Keywords: Mechanism order; In®nitesimal mechanism; Finite mechanism; Reticulated system

1. Introduction

1.1. Equilibrium and compatibility equations

Reticulated systems are pin-jointed systems comprising members with bilateral or unilateral
rigidity (bars, struts and cables) assembled with perfect pins. Members have a straight mean ®bber,
loads are applied on nodes. In case of coincidence of mean ®bbers at the centre of gravity of a
node, members are only subjected to tension or compression stresses. For a system with b
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elements. n nodes and k displacement restrictions for node, imposed by a frame, the number of

degrees of freedom for the whole system is N � 3nÿ k �N � 2nÿ k for two-dimensional systems).

Kinematically and statically indeterminate reticulated systems are characterised by mechanisms and

selfstress states. Pellegrino and Calladine (1986) developed a method which gives a selfstress state basis

{q 0} and a mechanism basis fd Kg: This basis determination relies on the study of the equilibrium matrix

[A ] of the system in its reference con®guration. Reference con®guration is associated with the non

loaded, but selfstressed geometry. Linear algebra results are applied to equilibrium and compatibility

equations written in a matrix form as follows:

Nomenclature

[A ] equilibrium matrix N� b for a reticulated system in its reference con®guration
�A�t transpose matrix of equilibrium matrix [A ] or compatibility matrix for reference

con®guration
b number of members for a reticulated system
{d } vector (N components) of node displacements related to reference con®guration
fd Kg mechanism vector, de®ned by �A�tfd Kg � f0g (i.e. fd Kg 2 Ker At)
fd Krg vector belonging to mechanisms basis �fd Krg 2 Ker At)
fd K�a�g the ``a'' order part of a mechanism fd Kg �fd K�a�g 2 Ker At�
fd Ig vector nodes displacements, orthogonal to the mechanisms (i.e. fd Ig 2 Im A)
fd Ipg vector belonging to orthogonal displacements basis �fd Ipg 2 Im A)
fd I�a�g the ``a'' order part of an orthogonal displacement �fd I�a�g 2 Im A)
[D0] connection matrix N�N of selfstress coe�cients
[DAd] matrix N� b corresponding to the matrix di�erence between the equilibrium matrix

�Adef�d�], in its deformed state de®ned by {d }, and the equilibrium matrix [A ] in its
reference state: �DAd � � �Adef�d �� ÿ �A�

{e } vector (b components) of member length variation coe�cients evaluated in respect to the
reference con®guration

ej length variation coe�cient for member j, de®ned by ej � `0j �`j ÿ `0j �
Im A vectorial column space of the equilibrium matrix [A ] (dimension = rA)
k number of restrictions for node displacements for a reticulated system
Ker A vectorial nullspace of the equilibrium matrix [A ]
Ker A t vectorial left nullspace of the equilibrium matrix [A ] (dimension = m )
`0j member j length in reference state
`j member j length in a loaded state
m number of independent mechanisms for a reticulated system
n number of nodes for a reticulated system
N number of degrees of freedom (dof) for a reticulated system �N � 3nÿ k for space

systems), �N � 2nÿ k for plane systems)
{q } vector (b components) of force density coe�cients
qj force density coe�cient of member j, de®ned by qj � Tj=`

0
j

{q 0} selfstress vector for a reticulated system, de®ned by �A�fq0g � f0g
q0j selfstress coe�cient of member j, de®ned by q0j � T 0

j =`
0
j

rA rank of the equilibrium matrix [A ] (or of [A ]t)
Tj axial compressive or tensile stress for member j
T 0

j axial compressive or tensile stress for member j in reference state
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Equilibrium equation: �A�fqg �
�
f
	 �1�

Compatibility equation: �A�tfdg � feg �2�
where [A ] is the equilibrium N� b matrix (reference con®guration).

{q } is the b vector of force density coe�cients:

For a member j: qj � Tj

l 0j
�3�

where Tj is the axial compressive or tensile stress for member j, l 0j is the length of member j in its
reference state, { f } is the N-vector of external loads applied on nodes, �A�t is the transpose of
equilibrium matrix [A ], {d } is the N-vector of node displacements related to reference con®guration
(these free displacements are assumed to be very small), {e } is the b-vector (b components) of member
length variation coe�cients evaluated with respect to reference con®guration:

For a member j: ej � l0j Dlj � l0j

�
lj ÿ l0j

�
�4�

and lj is the length of member j in a loaded state.
We adopted this form for equilibrium and compatibility equations, using force density coe�cients and

member length variation coe�cients, since it allows to split in the ®rst member of �A�fqg � ff g, lengths
(included in [A ]) from products ``mass � (time)ÿ2'' (included in coe�cients qj).

1.2. Selfstress vector

In reference con®guration, without external loads (i.e. ff g � f0g), vector {q } is called selfstress vector
and is noted {q 0}. It exactly veri®es:

�A�
�
q0
	
� f0g �5�

A selfstress state basis {q 0} is a basis of matrix [A ] nullspace �fq0g 2 Ker A�, which is a vectorial
subspace of space Rb (members space).

We assume that materials are in their linear elastic range, which does not restrict the generality of
results. In such a case, b elastic relations may be written:

8j � 1, . . . ,b: qj � q0j �Hjej or in matrix form: fqg �
�
q0
	
� �H�feg �6�

where Hj is the elastic coe�cient of member j, [H ] is the b� b elasticity matrix, and [H ] is a positive
de®nite diagonal matrix.

1.3. Mechanism vector

Particular values of fdg for which feg � f0g at ®rst order (length variation coe�cients are equal to
zero) can be found. These displacements, noted fd Kg, are called mechanisms and they are de®ned at ®rst
order by the relationship (derived from compatibility equations (2)):

�A�t
�
d K
	
� f0g �7�
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A mechanism basis fd Kg can be calculated by determination of the vectorial left nullspace of matrix
�A�t �fd Kg 2 Ker At�: The m vectors of this basis will be noted fd Krg �r � 1, . . . ,m�:

In displacement space RN, the vectorial subspace Im A (column space of [A ]) is the orthogonal
supplementary space of Ker A t. Displacements which belong to this vectorial subspace Im A are noted
{d I} �fd Ig 2 Im A� and are orthogonal to the mechanisms. These displacements create length variations
in the members. Length variations are of same order as these displacements.

A general displacement {d } can be so uniquely splitted in a displacement {dK} belonging to Ker A t

and a displacement {d I} belonging to Im A:

fdg �
�
d K
	
�
�
d I
	

since RN � Im A� Ker At �� � direct summation� �8�
where fdg 2 RN, fd Kg 2 Ker At, fd Ig 2 Im A, and with fd Kgt.fd Ig � 0, ``.'' is used for canonical scalar
product in RN:

1.4. Mechanism order de®nition

Mechanism's de®nition and its study are related to size order notions. Equivalent norm for RN or Rb

are used to quantify size orders. Euclidean norm for a vector fX g of RN will be noted kXk and given by:

kXk �
�
S
N

i�1
X 2

i

�1=2

�9�

System member lengths `j are considered as ®nite, and assumed to be of zero order:

8 j, `j � O0 with O0 � zero order �10�
or

k`k � O0 with f`g � �`1, . . . ,`j, . . . ,`b
	t �11�

Applied loads on nodes are assumed to be so, that node displacements are small with respect to system
size. Consequently, vector {d } norm is assumed to be of order one:

kdk � O1 with O1 � xO0 �12�
with x being a strictly positive real number very small with respect to one �x� 1).

Similarly, order ``r'' is de®ned by:

Or � xOrÿ1 � xrO0 �13�
Written form `` 1

�Or�
'' will be used for equalities limited to order r. And ``a'' order value of X will be

quoted X �a�: Thus, it can be written as:

X �
X
ara0

X �a� with kX �a�k � Oa or X �a� � 0 �exact equality� �14�

These two possibilities are associated with the symbol ``�0 '' i.e.:

kX �a�k�0 Oa , kX �a�k � Oa or X �a� � 0 �exact equality� �15�

The equality symbol ``='', when used without superscript implies that term X �a� is not equal to zero
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kX �a�k � Oa � xaO0 �) X �a� 6� 0 �16�
This paper deals only with internal mechanisms of reticulated systems. Solid type mechanisms
corresponding to overall displacements are previously identi®ed (Pellegrino and Calladine, 1986) and
considered separately. We make the hypothesis that at least one node is ®xed and that the system is
connected.

It is necessary to distinguish ``®rst order in®nitesimal mechanisms'' from ``higher order in®nitesimal
mechanisms''. According to Koiter's de®nitions (Koiter, 1984): ``an in®nitesimal mechanism of the ®rst
order is characterised by its property that any in®nitesimal displacement of the mechanism is
accompanied by second-order elongations of at least some of the bars. An in®nitesimal mechanism is
called of second (or higher) order, if there exists an in®nitesimal motion such that no bar undergoes an
elongation of lower than the third (or higher) order''.

To de®ne more precisely the order of mechanisms, we use the formulation submitted by Tarnai
(1984), formulation that we extended to multiparametered case, and which is similar to the one
submitted by Salerno (1992). An internal mechanism is called mechanism of order ``r'' �rr1� if there
exists in®nitesimal node displacements (of the ®rst order) such as member length variations are equal to
zero until order r, but there does not exist in®nitesimal node displacements such as member length
variations are equal to zero at order r� 1:

Mechanism of order r ,8<: 9kdk � O1

ÿ
i:e: fdg 6� f0g�:�e�1�	 � f0g, �e�2�	 � f0g, . . . ,fe�r� g � f0g

8kdk � O1:
�
e�r�1�

	
6� f0g

�17�

A mechanism is called ®nite mechanism if there exists a displacement which does not generate length
variations of any order.

Many authors have worked recently on mechanism's order determination for kinematically
indeterminate systems.

Calladine and Pellegrino (1991a, 1992) submit a test, which is based on energetical computations and
which allows to establish a distinction between mechanisms of the ®rst order and of higher order.
Kuznetsov (1988, 1991a, 1991b, 1991c) develops a method based on the decomposition of the system in
sub-systems. Tarnai (1989) uses a geometrical method, with which he tests all the possible displacements
in order to ®nd (by a max (min) research) those which are associated with the least length variations.
But this method can only be used for simple or periodic reticulated systems.

Lastly Salerno (1992) gives a numerical method based on energetical properties of systems. The
corresponding algorithm is based on the calculation of deformation energy of system supposed to be in
zero selfstress state, and length variations for members appear in a quadratic form. In this method after
a parametring operation, energy is developed as a series, whose increasing order terms are minimised.
These calculations are done in the vicinity of mechanisms, but without explicit decomposition of
displacements in two orthogonal vectorial subspaces of RN �RN� Im A
 Ker At�: Corresponding results,
given in numerical form, give only an inferior limit of mechanism's order, certainly because of
calculation complexity.

We describe in this paper an analytic method for which only geometrical properties of kinematically
indeterminate systems are taken into account. With this method and mainly with the underlying
algorithm (Section 5), order of in®nitesimal mechanisms can be evaluated without limitation for order's
level. A stop criterion (Section 7) is also given so as to detect possible ®nite mechanisms of a
kinematically indeterminate system.

Before giving a description of our algorithm, higher order mechanisms (Section 2) and ®rst-order
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mechanisms (Section 3) are characterised geometrically and energetically. Some examples illustrate
simultaneously these characteristics and corresponding associated methods (Sections 4, 6 and 7.3).

2. Higher order mechanism characterisation

2.1. Higher order mechanism geometrical characterisation

According to the de®nition, a reticulated system admits a higher order mechanism, if there exists a
displacement {d } of order one (i.e. not equal to zero), such as length variation coe�cients are equal to
zero until order two, i.e.:

9kdk � O1 such as feg1�O2 �f0g �18�

To express this geometrical characteristic, it is interesting to write the next relationship between length
di�erence for a member j, from its reference state �`0j � to its deformed state �`j), and displacements of it
extremities i and h:ÿ

`j
�2ÿ�`0j �2� X

x, y, z

�
xi ÿ xh � d K

ix ÿ d K
hx � d I

ix ÿ d I
hx

�2ÿX
x, y, z

�xi ÿ xh�2 �19�

with

ÿ
`j
�2ÿ�`0j �2� �`0j � D`j

�2
ÿ
�
`0j

�2
� 2ej �

e2j�
`0j

�2 �20�

where d K
ix is the component of the mechanism vector fd Kg, associated with node i - degree of freedom

along X direction (and so it is for dI
ix with vector fd Ig).

Then the following exact expression may be established:

ej �
e2j

2
�
`0j

�2 � X
x, y, z

�
�xi ÿ xh �

ÿ
d I

ix ÿ d I
hx

�� 1

2

ÿ
d K

ix ÿ d K
hx

�2�ÿd K
ix ÿ d K

hx

�ÿ
d I
ix ÿ d I

hx

�� 1

2

ÿ
d I
ix

ÿ d I
hx

�2� �21�

A matrix form of this equation is obtained by noting �DAd� the matrix di�erence between the
equilibrium matrix �Adef�d �], in its deformed state under {d }, and the equilibrium matrix [A ] in its
reference state:

�DAd � �
�
Adef�d�

�
ÿ �A� �22�

Terms of �DAd� are simply obtained by replacing coordinates xi in matrix [A ] by corresponding
displacements dix:

Two matrices �DAd K � and �DAd I � associated with displacements {dK} and {d I} are introduced and
relationship (21) becomes the following exact matrix expression:
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8<:ej � e2j

2
�
`0j

�2
9=; � �A�t

�
d I
	
� 1

2

�
DAd K

�t�
d K
	
� �DAd K

�t�
d I
	
� 1

2

�
DAd I

�t�
d I
	

�23�

Geometrical characterisation requires a study in the vicinity of a mechanism: we assume that external
loads create mechanism displacements {dK} of order one and orthogonal displacements {d I} of order
greater or equal to two:

fdg �
�
d K
	
�
�
d I
	

with kdk � O1, kd Kk � O1 and kd IkRO2: �24�
According with our hypothesis, we may also write:

k�A�t
�
d I
	
kRO2, k

�
DAd K

�t�
d I
	
kRO3 and k�DAd I

�t�
d I
	
kRO4 �25�

But, since it is assumed that the system is connected and that at least one node is ®xed, the product
�DAd K �tfd Kg is of order O2 when the mechanism vector {dK} is of order O1:

kd Kk � O1 �) k
�
DAd K

�t�
d K
	
k � O2 �26�

Consequently, if in relationship (23) we keep only main terms of order less than or equal to two, it
remains:

feg1�O2 ��A�t
�
d I
	
� 1

2

�
DAd K

�t�
d K
	

�27�

As the term �A�tfd Ig is of same order as vector {d I}, one can cancel the sum �A�tfd Ig � �1=2��DAd K �tfd Kg
only if displacements {d I} are of order O2: Therefore, we make this hypothesis:

kd Ik � O2 �28�
In this case, the two terms of the preceding expression are of order two, and it can be written:

feg1�O2 ��A�t
�
d I
	
� 1

2

�
DAd K

�t�
d K
	
�
�
e�2�

	
�29�

The following geometrical characterisation of a higher order mechanism may so be stated:
``A reticulated system admits a higher order mechanism, if, and only if, there exists in the vicinity of a

mechanism {dK} (not equal to zero), a displacement {d I} ($Im A ) such as length variation coe�cients
{e } are equal to zero until order two'', which may be written as:

9
ÿ�
d K
	
,
�
d I
	�
2 �Ker At ÿ f0g � Im A� such as

�
e�2�

	
� �A�t

�
d I
	
� 1

2

�
DAd K

�t�
d K
	
� f0g �30�

2.2. Energetic characterisation of higher mechanisms

Strain energy Wj, for a member j of a reticulated system, between its reference state (not loaded) and
the deformed state, when loaded, is de®ned by:

Wj �
�`j
`0j

ÿ
Tj

�
dl �31�
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By introducing in the previous relationships, the force density coe�cient q, the axial stress Tj may be
written as:

Tj � qj`
0
j �

�
q0j �Hjej

�
`0j � q0j `

0
j �Hj

�
`0j

�2�
`j ÿ `0j

�
�32�

So, strain energy Wj is exactly:

Wj � q0j ej �
1

2
Hje

2
j �33�

Corresponding energy for the whole system is written as:

W � S
b

j�1
Wj � fegt

�
q0
	
� 1

2
fegt�H�feg �34�

In the vicinity of a mechanism {dK}, length variation coe�cients {e } may be replaced by their second-
order expressions (29). If terms of order less than or equal to two are only considered, it remains:

W 1
�O2 ��

d I
	t�A�

�
q0
	
� 1

2

�
d K
	t�

DAd K

��
q0
	

�35�

Indeed, it is assumed by hypothesis, that elastic coe�cients Hj are of order Oÿ1 (with Oÿ1 � O0=x, that
selfstress coe�cients q0j � HjD`0j are of order O0 if Ker A 6� f0g, and therefore, that length variations D`0j
(between the non convened state and the reference state), creating this selfstress, are of order O1:

But the product �A�fq0g is exactly equal to zero according to the de®nition of fq0g, and strain energy
evaluated at second order takes the form:

W 1
�O2 �1

2

�
d K
	t�

DAd K

��
q0
	

�36�

This form is the same as the one given by Calladine and Pellegrino (1991a, 1991b) for strain energy
expression.

``Energetic'' and ``geometric'' characterisation are equivalent criteria for higher order mechanisms.
Indeed, multiplying Eq. (30) by any selfstress state {q 0} belonging to Ker A, leads to the following
expression:

�
e�2�

	t�
q0
	
�
�
�A�t

�
d I
	
� 1

2

�
DAd K

�t�
d K
	�t�

q0
	
� 0 �37�

hence,�
d I
	t�A�

�
q0
	
� 1

2

�
d K
	t�

DAd K

��
q0
	
� 0 �38�

so

1

2

�
d K
	t�

DAd K

��
q0
	
� 0 since �A�

�
q0
	
� f0g �39�

Speci®c case corresponding to Ker A � f0g does not make an exception. For all systems without
selfstress states, mechanisms orders are higher than one. In fact, one knows that all statically
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determinate and kinematically indeterminate systems are ®nite mechanisms. (We give otherwise in
Section 7, a method of determination of ®nite mechanisms).

The converse proposal is also true. Indeed, if:

9
�
d K
	
2 �Ker At ÿ f0g� such as 8

�
q0
	
2 Ker A,

1

2

�
d K
	t�

DAd K

��
q0
	
� 0 �40�

Then, since Rb� Im At � Ker A and Im At?Ker A, previous hypothesis implies that:

1

2

�
DAd K

�t�
d K
	
2 Im At �41�

Thus, if �DAd K �tfd Kg 2 Im At, there exists fdg 2 RN such as:

1

2

�
DAd K

�t�
d K
	
� ÿ�A�tfdg �42�

As fdg�fd 0 Kg � fd Ig (with fd 0 Kg being an arbitrary mechanism) so:

1

2

�
DAd K

�t�
d K
	
� ÿ�A�t

�
d I
	

�43�

where fd Ig 2 Im A is necessarily of order two, if {dK} is of order one.
Therefore,�

DAd K

�t�
d K
	
2 Im At is equivalent to: �A�t

�
d I
	
� 1

2

�
DAd K

�t�
d K
	
� f0g �44�

A higher order mechanism may be characterised as follows:
``A reticulated system admits a mechanism {dK} (not equal to zero) and of order higher than one if

and only if whatever can be its selfstress states, strain energy is, in the mechanism vicinity, always zero
until order two'':

9
�
d K
	
2 �Ker At ÿ f0g�, 8

�
q0
	
2 Ker A:W 1

�O2 �1
2

�
d K
	t�

DAd K

��
q0
	
� 0 �45�

This may also be written in the following quadratic form:

9
�
d K
	
2 �Ker At ÿ f0g�, 8

�
q0
	
2 Ker A:W 1

�O2 �1
2

�
d K
	t�D0 ��d K

	
� 0 �46�

where �D0� is the N�N connection matrix of selfstress coe�cients.
Indeed, there exists a symmetric matrix �D0� such as:�

DAd K

��
q0
	
� �D0 ��d K

	
�47�

This matrix �D0� may be established as follows:

. D0
ixix � SSS

j �i
q0j (summation of all selfstress coe�cients for members linked to node i ),

. D0
ixhx � ÿq0j if the nodes i and h �h 6� i� are connected by member j,

. D0
ixhx � 0 else,

. D0
ixhy � 0 8i, 8h (i.e. when degrees of freedom ix and hy do not correspond to the same direction).

For free nodes, along the same direction, this leads to the matrix used by Sheck (1974):
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�D0 � � �Cl �t
�
Q0
�
�Cl � �48�

where �Q0� is the diagonal matrix comprising the b selfstress coe�cients and �Cl� is the free nodes
connectivity matrix of the system.

3. Characterisation of ®rst-order mechanisms

3.1. Geometrical characterisation of order one mechanisms

A mechanism {dK}, not equal to zero, is of order one, if it induces length variations of order two in
system members. That is to say that, whatever the displacements {d I} orthogonal to the mechanisms
are, the length variation coe�cients vector remains di�erent from zero at order two, in the vicinity of a
mechanism {dK}:

8
�
d I
	
2 Im A:

�
e�2�

	
� �A�t

�
d I
	
� 1

2

�
DAd K

�t�
d K
	
6� f0g �49�

Consequently, an indeterminate reticulated system admits only ®rst-order mechanisms if and only if:

8
ÿ�
d K
	
,
�
d I
	�
2 �Ker At ÿ f0g � Im A�:

�
e�2�

	
� �A�t

�
d I
	
� 1

2

�
DAd K

�t�
d K
	
6� f0g �50�

3.2. Energetic characterisation of ®rst-order mechanisms

In this case it is su�cient to use the logical converse proposal of higher order mechanisms. An
indeterminate reticulated system admits only ®rst-order mechanisms if and only if:

8
�
d K
	
2 �Ker At ÿ f0g � Im A�, 9

�
q0
	
2 Ker A:W 1

�O2 �1
2

�
d K
	t�D0 ��d K

	
6� 0 �51�

So, again, if Ker A � f0g, it is found that possible mechanisms of a system can not be ®rst-order
mechanisms. In fact, these are ®nite mechanisms.

4. Application to simple reticulated systems

4.1. Reticulated system with two members assembled side by side

We consider a plane reticulated system, comprising two members of same length, assembled side by
side (Fig. 1(a)). Analysis of equilibrium �A� � � 10 1

0

�
allows to obtain a mechanism basis fd Kg � mf0, 1gt,

orthogonal displacements fd Ig � uf1, 0gt and selfstress states fq0g � af1, ÿ 1gt �m, u and a are arbitrary
real numbers). We want to determine the order of mechanism {dK}.

4.1.1. First method: geometrical characterisation
We calculate the length variation coe�cients at order two in the vicinity of mechanism {dK}

(Fig. 1(b)). According to relationship (29), we may write:
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8>>><>>>:
e1 1
�O2 �

u� m2

2

e2 1
�O2 �

u� m2

2

since
�
DAd K

� � � 0 0
m m

�
�52�

We observe that there exists a displacement {d I} (corresponding to u � ÿm2=2� which cancels at order
two the length variation coe�cients. Then {dK} is a mechanism of order higher than one.

Finally, this is a ®nite mechanism, since all the length variation coe�cients {e } may be cancelled for
every order with u �

�������������
1ÿ m2

p
ÿ 1:

4.1.2. Second method: energetic characterisation
The connection matrix of selfstress coe�cients is evaluated in order to obtain strain energy value at

second order in the mechanism vicinity:

�D0 � �
�
q01 � q02 0
0 q01 � q02

�
�) W 1

�O2 �1
2

�
d K
	t�D0 ��d K

	
� ÿq01 � q02

�m2
2
� �aÿ a�m

2

2
� 0 �53�

Strain energy is always equal to zero until order two, independently of applied selfstress states.
Mechanism {dK} is a higher order mechanism.

4.2. Reticulated system with two members assembled end to end

Let us consider now, a plane reticulated system comprising two members of identical length,
assembled end to end (Fig. 2(a)). Analysis of equilibrium matrix �A� � � 1 ÿ1

0 0
� leads to the

determination of a mechanism basis fd Kg � mf0, 1gt, orthogonal displacements fd Ig � uf0, 1gt, and
selfstress states fq0g � af1, 1gt:

Which is the order of a non zero mechanism {dK} (i.e. m 6� 0)? Is it a ®rst-order mechanism?

Fig. 1. (a) Plane reticulated system with two ``side to side'' members, in its reference state. (b) Plane reticulated system with two

``side to side'' members in its deformed state, in mechanism's vicinity.
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4.2.1. First method: geometrical characterisation
Vector {e } is calculated until second order, in the vicinity of mechanism {dK} (Fig. 2(b)). According

to relationship (29), we get:8>>><>>>:
e1 1
�O2 �

u� m2

2

e2 1
�O2 � ÿ u� m2

2

since
�
DAd K

� � � 0 0
m m

�
�54�

The length variation coe�cients e1 and e2 are not equal to zero, independently of the value u. None
displacement {d I} cancels {e } at second order. Mechanism {dK} is associated with length variations of
second order, therefore, it is a ®rst-order mechanism.

4.2.2. Second method: energetic characterisation

�D0 � �
�
q01 � q02 0

0 q01 � q02

�
�) W 1

�O2 �1
2

�
d K
	t�D0 ��d K

	
� ÿq01 � q02

�m2
2
� am2 �55�

Strain energy W can be equal to zero, for at least one selfstress state (corresponding to any a 6� 0). So
mechanism {dK} is a ®rst-order mechanism.

5. Order of in®nitesimal mechanisms

5.1. Notations and hypothesis

The following algorithm leads to the determination of all higher mechanisms for a reticulated system
and of the order value for a given in®nitesimal mechanism.

It is based on geometrical characteristics in the mechanism vicinity and on splitting up general

Fig. 2. (a) Plane reticulated system with two ``end to end'' members in its reference state. (b) Plane reticulated system with two

``end to end'' members in its deformed state, in mechanism's vicinity.

N. Vassart et al. / International Journal of Solids and Structures 37 (2000) 3807±38393818



displacement {d } in the two vectorial subspaces, complementary and orthogonal subspaces Ker A t and
Im A. So a displacement {d } of order one may be written, in the mechanism vicinity {dK} as:

fdg �
�
d K
	
�
�
d I
	

with
�
d K
	
2 �Ker At ÿ f0g�,

�
d I
	
2 Im A and kd Kk � O1, kd Ik � O2 �56�

It is very important to notice that the geometrical characterisation of higher order mechanism de®nes
this mechanism only at ®rst order. It gives only the order one main part of mechanism {dK}, which is
noted {dK(1)}. Geometrical characterisation may be written too:

9
��

d K�1�
	
,
�
d I�2�

	�
2 �Ker At ÿ f0g � Im A�:feg1�O2 ��A�t

�
d I�2�

	
� 1

2

�
DAd K�1 �

�t�
d K�1�

	
� f0g �57�

where {d I(2)} is the second-order main part of displacements {d I}.
This equation is used to identify ®rst-order mechanisms. For subsequent steps, higher order terms of

{dK}, and generally of {d I} too, are taken into account so as to know if length variations cancel for a
given order.

The method is based on a step by step algorithm: if there exists mechanisms of order higher than ``r'',
the problem is to know if there are of order ``r� 1'' and so on.

5.2. Mechanisms of ®rst order or of higher order

First step of algorithm is based on the geometrical characterisation of higher order mechanism
(written under the form (57)). It determines the possible higher order mechanism:

9
��

d K�1�
	
,
�
d I�2�

	�
2 �Ker At ÿ f0g � Im A�

such as
�
e�2�

	
� �A�t

�
d I�2�

	
� 1

2

�
DAd K�1 �

�t�
d K�1�

	
� f0g

�58�

where fd K�1�g is the ®rst-order main part of {dK}, de®ned according to a mechanisms basis and fd I�2�g is
the second-order main part of {d I}, de®ned according to an orthogonal displacements basis.

If system of equations fe�2�g � f0g has no solution in fd K�1�g and fd I�2�g, except zero solution, then the
reticulated system admits only ®rst-order mechanisms. Conversely, there exists at least one higher order
mechanism, since there exists at least a displacement fd I�2�g which cancels at order two length variation
coe�cients fe�2�g generated by the displacement fd K�1�g: At the end of this step, only the ®rst-order main
part fd K�1�g of mechanism {dK} is known.

With respect to fd I�2�g components, the system is linear, but it is quadratic with respect to those of
fd K�1�g:

To write the equations with independent variables, the decomposition of displacement vectors on a
basis of their respective vectorial subspaces is used. Mechanism vectors are then de®ned as a linear
combination of vectors fd K1g, . . . ,fd Krg, . . . ,fd Kmg which constitute a basis of the vectorial subspace Ker
A t: �

d K
	
�
Xm
r�1

mr
�
d Kr

	
�59�

with kd Krk � O0 and jmrjRO1:
The vector comprising all m independent variables mr is noted as fmg:
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fmg � fm1, . . . ,mr, . . . , mmgt �60�

Similarly, we may express any displacement vector {d I} in a basis fd I1g, . . . ,fd Ipg, . . . ,fd IrAg of the
vectorial subspace Im A as:�

d I
	
�
XrA
p�1

ur
�
d Ip

	
�61�

with

kd Ipk � O0, jupjRO2 and fug � fu1, . . . , up, . . . ,urA gt �62�
It may be also written as:�

d K�1�
	
�
Xm
r�1

m�1�r

�
d Kr

	
and

�
d I�2�

	
�
XrA
p�1

u�2�p

�
d Ip

	
�63�

It is then necessary to solve a system with b equations and m� rA � N unknowns �fm�1�g and fm�2�g).

5.3. Order two mechanisms

If the considered system admits higher mechanisms, the question is to know if they are only of order
two, or if they are the ®rst terms of higher mechanisms. That is why, order three length variation
coe�cients fe�3�g are evaluated by taking into account higher order displacement terms. So, we write:�

d K
	
�
�
d K�1�

	
�
�
DK

	
with kDKk�0 O2 �64�

and �
d I
	
�
�
d I�2�

	
�
�
DI
	

with kDIk�0O3 �65�

where fd K�1�g and fd K�2�g are the results of the previous step, {DK} and {D I} are the new unknowns
(with DK 2 Ker At and DI 2 Im A� with:�

DK
	
�
Xm
r�1

�mr
�
d Kr

	
and

�
DI
	
�
XrA
p�1

Up

�
d Ip

	
�66�

In the speci®c case related to only given mechanism {dK} study (for example if m =1), only
components of displacements {d I} may be used to cancel member length variations. Then, the algorithm
is performed without modifying {dK} (i.e. fd Kg � fd K�1�g since fDKg � f0g:)

If, in the exact relationship (23), between length variation coe�cients and displacement vectors only
preponderant terms of order three are considered, general writing of order three length variation
coe�cients is then:�

e�3�
	
� �A�t

�
DI
	
� �DAd K�1 �

�t�
DK

	
� �DAd K�1�

�t�
d I�2�

	
�67�

Remark. In this relationship no term related to term e2j =2�`0j �2 included in exact relationship (22)
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appears, since it leads to order four or more than four terms, when length variations are equal to zero
at order two. And so it is for all orders.

System of equations fe�3�g � f0g is a linear system with b equations and N unknowns ({ �m and {U }). If it
has no solution, the considered mechanism is of order two. In case of existence of at least a solution
�f �mg, fU g), solution vectors of �fDKg, fDIg�, noted �fd K�2�g, fd I�3�g� may be determined. Corresponding
mechanisms fd Kg � �fd K�1�g � fd K�2�g� are of order higher than two, and next step of algorithm has to be
performed.

5.4. Order ``r'' mechanism

The algorithm may be generalised as follows.
Objective of step r (r >1) in the algorithm is to determine if the mechanism found at the previous

step, is only of order ``r'' or if it is the ®rst term of higher order mechanism. After step rÿ 1,
displacements �fd K� g, fd I� g� are known, they cancel length variations until order r:

9
 �

d K�
	
�
Xrÿ1
a�1

,
�
d K�a�	, �d I�

	
�
Xr
a�2

�
d I�a�	! with

�
d K�a�	 2 Ker At and

�
d I�a�	 2 Im A

satisfying:�
e�2�

	
� f0g,

�
e�3�

	
� f0g, . . . ,

�
e�r�
	
� f0g �68�

The problem is to ®nd if there exists displacements �fDKg, fDIg� (de®ned as follows), which cancel length
variations at order r� 1:

9
ÿ�
DK

	
,
�
DI
	�
2 �Ker At � Im A�,

�
e�r�1�

	
� f0g �69�

with

�
d K
	
�
Xrÿ1
a�1

�
d K�a�	� �DK

	
�
�
d K�

	
�
�
DK

	
where kDKk�0 Or �70�

�
d I
	
�
Xr
a�2

�
d I�a�	� �DI

	
�
�
d I�
	
�
�
DI
	

where kDIk�0Or�1 �71�

where�
DK

	
�
Xm
r�1

�mr
�
d Kr

	
and

�
DI
	
�
XrA
p�1

Up

�
d Ip

	
�72�

To establish, in accordance with the exact relationship (23), general formulations allowing the
calculation of vector fer�1g of length variation coe�cients at order r� 1, it is necessary to di�erentiate
even and odd values of r.

5.4.1. For odd values of r �r � 2Zÿ 1)
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�
er�1

	
�
�
e�2Z�

	
� �A�t

�
DI
	
� �DAd K�1 �

�t�
DK

	
� �DAd K�2 �

�t�
d K�2Zÿ2�	� � � �

� �DAd K�Zÿ1 �
�t�

d K�Z�1�	� 1

2

�
DAd K�Z �

�t�
d K�Z�

	
� �DA

dK�1 �
�t�

dI�2Zÿ1�	� � � �
� �DAd K�2Zÿ3 �

�t�
d I�3�

	
� �DAd K�2Zÿ2 �

�t�
d I�2�

	
� �DAd I�2 �

�t�
d I�2Zÿ2�	� � � �

� �DAd I�Zÿ1 �
�t�

d I�Z�1�	� 1

2

�
DAd I�Z�

�t�
d I�Z�

	
�73�

The vector fer�1g is a result of the summation of 2r terms as they are de®ned above.

5.4.2. For even values of r �r � 2Z)

�
e�r�1�

	
�
�
e�2Z�1�

	
� �A�t

�
DI
	
� �DAd K�1 �

�t�
DK
	
� �DAd K�2 �

�t�
d K�2Zÿ1�	

� � � � � �DAd K�Z �
�t�

d K�Z�1�	� �DAd K�1 �
�t�

d I�2Z�	
� � � � � �DAd K�2Zÿ1 �

�t�
d I�2�

	
� �DAd I�2 �

�t�
d I�2Zÿ1�	� � � � � �DAd I�Z �

�t�
d I�Z�1�	 �74�

In this case, the vector fe�r�1�g is a result of the summation of 2rÿ 1 terms as they are de®ned above.
If the linear system fe�r�1�g � f0g (with b equations and N unknowns f �mg and fU g has no solution, the

considered mechanism fd Kg (or fd K� g� is of order r. On the other hand, if there exists at least one
solution �fDKg, fDIg�, associated to solutions �f �mg, fU g�, corresponding mechanisms fd Kg � fd K� g � fDKg
are of higher order than r. Its order determination needs to perform the r� 1 step of the algorithm.

Remark. Nevertheless, if we work with arbitrary vectors of RN (i.e. with 2N dependent variables), in
each step the displacements which are solutions may be found. But systems to solve are then more
important (more equations and more unknowns). Indeed, orthogonality between the two vectorial
subspaces Ker A t and Im A is used to take into account the link between variables. Then, the m� rA
(= N ) following relationships may be written:

8r � 1, . . . ,m:
�
d Kr

	
.
�
DI
	
� 0 �75�

8p � 1, . . . ,rA:
�
d Ip

	
.
�
DK

	
� 0 �76�

where fd Krg is the rnd vector of the mechanism basis (Ker A t), fd Ipg is the p nd vector of the
displacement basis, orthogonal to mechanisms (Im A ) and ``.'' is used for a scalar product.

These N relationships, associated with the b equations with 2N unknowns of system fe�r�g � f0g lead
to solve a system (linear for rr2� with b�N equations and 2N unknowns.

6. Algorithm applications

This section is devoted to the utilisation of the algorithm in two situations: determination of
mechanism's order and research of higher order mechanisms. Some examples illustrate this study.
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6.1. Determination of mechanism's order on a simple example

We consider an assembly of four members constituting a T-shape (Fig. 3); order of mechanisms is
required.

This assembly has been studied by several authors, who do not agree together. For Connelly (1980)
the in®nitesimal mechanism is of order two, for Tarnai (1989) and Kuznetsov (1991a) it is of order
three. For Salerno (1992), it is at least of the third order (because the corresponding program can not be
used after order two).

Study of vectorial subspaces associated to equilibrium matrix [A ] of the assembly gives access to a
mechanism basis fd K1g � f0, 0, 1, 0gt, and a basis of orthogonal displacements fd I1g � f1, 0, 0, 0gt,
fd I2g � f0, 1, 0, 0gt and fd I3g � f0, 0, 0, 1gt: The four components of these displacement vectors ®t with
the 4 dof (2x, 2y, 4x, 4y ) of this reticulated system.

Any mechanism fd Kg and orthogonal displacement fd Ig are given by:�
d K
	
� m1

�
d K1

	
� �0, 0, m1, 0	t �77�

and �
d I
	
� u1

�
d I1

	
� u2

�
d I2

	
� u3

�
d I3

	
� fu1, u2, 0, u3gt �78�

where m1, u1, u2 and u3 are arbitrary real numbers.
We apply the algorithm to determine the order of the internal mechanism fd Kg �m � 1�: Length

variation coe�cients vector fe�2�g is evaluated at order two.

�
e�2�

	
� �A�t

�
d I�2�

	
� 1

2

�
DAd K�1 �

�t�
d K�1�

	
�
�
u1, ÿ u1, u2 ÿ u3 � 1

2
m21, u3 �

1

2
m21

�t

�79�

In this example and following ones, notations may be simpli®ed: order of scalars �m1, u1, u2 and u3) is
not indicated, since there is no possible confusion.

The system fe�2�g � f0g admits one solution:

u1 � 0, u2 � ÿm21 and u3 � ÿ1
2
m21 �80�

Fig. 3. Plane reticulated system with four members representing a T-shape, in its reference con®guration.

N. Vassart et al. / International Journal of Solids and Structures 37 (2000) 3807±3839 3823



Consequently, order of mechanism fd Kg � fd K�1�g is higher than one, since there exists a displacement
fd I�2�g (Fig. 4) which cancels at order two, the length variation coe�cients for every member of the
system.

Is this mechanism of order two ? Answer is given by the second step of algorithm.
Vector fe�3�g is calculated at order three, taking into account the following displacements:�

d K
	
�
�
d K�1�

	 ÿ
since

�
DK
	
� f0g in case of m � 1

�
�81�

�
d I
	
�
�
d I�2�

	
�
�
DI
	

with kDIk�0O3 �82�

where fd K�1�g � f0, 0, m1, 0gt, fd I�2�g � f0, ÿm21, 0, ÿ�1=2�m21gt and fDIg � fU1, U2, 0, U3gt:
Then:�

e�3�
	
� �A�t

�
DI
	
� �DAd K�1 �

�t�
d I�2�

	
� fU1, ÿU1, U2 ÿU3, U3gt �83�

It is obvious that system fe�3�g � f0g admits only the zero solution:

U1 � U2 � U3 � 0 or
�
DI
	
�
�
d I�3�

	
� f0g �84�

There exists a displacement fDIg � fd I�3�g which cancels {e } at order three. Therefore, it may be
concluded that fd Kg is a mechanism of order higher than two.

We evaluate fe�4�g, with the following displacements:�
d K
	
�
�
d K�1�

	
�85�

and �
d I
	
�
�
d I�2�

	
�
�
d I�3�

	
�
�
DI
	

with kDIk�0O4 �86�

Since (according to the expression (73))�
e�4�

	
� �A�t

�
DI
	
� 1

2

�
DAd I�2 �

�t�
d I�2�

	
�87�

Fig. 4. Deformed reticulated system without length variations at orders one, two and three.
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then �
e�4�

	
�
�
U1 � 1

2
m41, ÿU1 � 1

2
m41, U2 ÿU3 � 1

8
m41, U3 � 1

8
m41

�t

�88�

It does not exist value of U1 solution of the system fe�4�g � f0g: Therefore, there is no displacement fd Ig
cancelling at order four length variation generated by mechanism fd Kg:

So, fd Kg � f0, 0, m1, 0gt is an in®nitesimal mechanism of order three, which is in accordance with
results from Tarnai (1989) and Kuznetsov (1991a) and displacements expressions that were given by the
®rst author.

It is interesting to notice that this method gives simultaneously the order of mechanism and values of
node displacements �fd Kg and fd Ig� which cancel length variations until the order of the mechanism
(Fig. 4).

We notice that another T assembly, comprising ®ve members (Fig. 5). which is considered by
Kuznetsov (1988) as an order two mechanism, and by Salerno (1992) as a mechanism at least of order
three, is also a mechanism of order three. Application of our algorithm leads to a system fe�4�g � f0g,
which has no U1 solution.

6.2. Determination of mechanisms's order on two examples

6.2.1. Example with eight members given by Kuznetsov
Let us search mechanisms of order higher than one for a plane reticulated system submitted by

Kuznetsov (1991a, 1991b, 1991c). Length of member 6 (Fig. 6) is parametered by ``a'' �a 6� 0).
It admits two internal independent mechanisms (m = 2):�

d K1
	
� f0, 1, 0, 0, 0, 1, 0, 0gt and

�
d K2

	
� f0, 0, 0, 1, 0, 0, 0, 1gt �89�

The eight components of these vectors ®t with the 8 dof (2x, 2y, 3x, 3y, 6x, 6y, 7x, 7y ) of the system.
So, any mechanism fd Kg may be described by:�

d K
	
� m1

�
d K1

	
� m2

�
d K2

	
� �0, m1, 0, m2, 0, m1, 0, m2	t �90�

with m1, m2 arbitrary real numbers.

Fig. 5. Plane reticulated system with ®ve members representing a T-shape, in its reference con®guration.
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An orthogonal displacement fd Ig is de®ned by:�
d I
	
� fu1, u2, u3, u4, u5, ÿ u2, u6, ÿ u4gt �91�

with u1, u2, u3, u4, u5 and u6 being arbitrary real numbers.
The system admits higher order mechanism fd Kg if there exists no zero displacements fd I�2�g such as
fe�2�g � f0g:�

e�2�
	
� �A�t

�
d I�2�

	
� 1

2

�
DAd K�1 �

�t�
d K�1�

	
� f0g �) f m2 � am1

�aÿ 3��aÿ 1� � 0
�92�

So, when length ``a'' of member 6 is not equal to 1 or 3, the system of equations has no solution, and
consequently mechanisms are of order one.

For the two other cases (a = 1 or a = 3), system has a solution �fd K�1�g, fd I�2�g�: All the mechanisms
are of order one, except those of the main part of fd K�1�g (with m2 � am1� which are of order higher than
one, i.e.:�

d K�1�
	
� m1

�
d K1

	
� am1

�
d K2

	
� �0, m1, 0, am1, 0, m1, 0, am1	t �93�

�
d I�2�

	
�
�
ÿ 1

4
m21, 0, ÿ

1

4
m22,

2ÿ a

8a
m22, ÿ

1

2
m21, 0, ÿ

1

2a
m22, ÿ

2ÿ a

8a
m22

�t

with m2 � am1 �94�

Which is the order for these mechanisms (necessarily higher than one)?

6.2.1.1. Case 1: �a � 1). When length ``a'' of member 6 is equal to 1, according to relationship (92), all
mechanisms are of ®rst order, except those of the main part of fd K�1�g de®ned by m2 � m1 � m:�

d K�1�
	
� m1

�
d K1

	
� m2

�
d K2

	
� m

ÿ�
d K1

	
�
�
d K2

	�
� �0, m, 0, m, 0, m, 0, m	t �95�

Are these mechanisms of order higher than two? Answer is given by applying the second step. So, we
note: �

d K
	
�
�
d K�1�

	
�
�
DK

	
with kDKk�0 O2 �96�

Fig. 6. Plane reticulated system with eight members studied by Kuznetsov, in its reference con®guration.
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and �
d I
	
�
�
d I�2�

	
�
�
DI
	

with kDIk�0O3 �97�

where�
DK

	
� �0, �m1, 0, �m2, 0, �m1, 0, �m2

	t
, �98�

�
d I�2�

	
�
�
ÿ 1

4
m2, 0, ÿ 1

4
m2,

1

8
m2, ÿ 1

2
m2, 0, ÿ 1

2
m2, ÿ 1

8
m2
�t

, �99�

�
DI
	
� fU1, U2, U3, U4, U5, ÿU2, U6, ÿU4gt: �100�

The system fe�3�g � �A�tfDIg � �DAd K�1� �tfDKg � �DAd K�1� �tfd I�2�g � f0g has no solution (refer to Vassart,
1995 for the related developments for this system and the subsequent).

Mechanisms of the main part fd K�1�g �� m�fd K1g � fd K2g� are of order two and this system (with a =
1) has no mechanisms of order higher than two. This result is in agreement with assertions by Calladine
and Pellegrino (1991b), and then Salerno (1992).

6.2.1.2. Case 2: (a = 3). When length ``a'' of member 6 is equal to 3, according to relationship (92),
only the mechanisms of the main part of fd K�1�g de®ned by m2 � 3m1 are of order higher than one:�

d K�1�
	
� �0, m, 0, 3m, 0, m, 0, 3m	t �101�

We are searching the order for these mechanisms generated by fd K�1�g: We have to write:�
d K
	
�
�
d K�1�

	
�
�
DK

	
with kDKk�0 O2 �102�

and �
d I
	
�
�
d I�2�

	
�
�
DI
	

with kDIk�0O3 �103�

where�
d I�2�

	
�
�
ÿ 1

4
m2, 0, ÿ 9

4
m2, ÿ 3

8
m2, ÿ 1

2
m2, 0, ÿ 3

2
m2,

3

8
m2
�t

, �104�

�
DI
	
� fU1, U2, U3, U4, U5, ÿU2, U6, ÿU4gt, �105�

�
DK

	
� �0, �m1, 0, �m2, 0, �m1, 0, �m2

	t
: �106�

We may assume that �m1 � 0, and so simplify the developments since we are only interested in the relative
displacement di�erence between the two independent mechanisms fd K1g and fd K2g:
Solving fe�3�g � f0g leads to the following solution:
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�m2 �
3

8
m2, U1 � 0, U2 � 0, U3 � 0, U4 � 3

8
m3, U5 � 0, U6 � ÿ3

4
m3 �107�

Therefore, there exists displacements fDKg � fd K�2�g and fDIg � fd I�3�g which cancel length variation
coe�cients fe�3�g at order three:

�
DK

	
�
�
d K�2�

	
�
�
0, 0, 0,

3

8
m2, 0, 0, 0,

3

8
m2
�t

�108�

�
DI
	
�
�
d I�3�

	
�
�
0, 0, 0,

3

8
m3, 0, 0, ÿ 3

4
m3, ÿ 3

8
m3
�t

�109�

Mechanism fd K� g is at least a mechanism of order three.

�
d K�

	
�
�
d K�1�

	
�
�
d K�2�

	
�
�
0, m, 0, 3m� 3

8
m2, 0, m, 0, 3m� 3

8
m2
�t

�110�

Does the mechanism fd K� g lead again to mechanisms of higher order? In order to know it, we express:�
d K
	
�
�
d K�1�

	
�
�
d K�2�

	
�
�
DK

	
with kDKk�0O3 �111�

and �
d I
	
�
�
d I�2�

	
�
�
d I�3�

	
�
�
DI
	

with kDIk�0O4 �112�

where�
DK

	
� �0, 0, 0, �m2, 0, 0, 0, �m2

	t
, �113�

�
DI
	
� fU1, U2, U3, U4, U5, ÿU2, U6, ÿU4gt: �114�

Length variation coe�cients are evaluated at order four (according to expression (73)):�
e�4�

	
� �A�t

�
DI
	
� �DAd K�1 �

�t�
DK

	
� 1

2

�
DAd K�2 �

�t�
d K�2�

	
� �DAd K�1 �

�t�
d I�3�

	
� �DAd K�2 �

�t�
d I�2�

	
� 1

2

�
DAd I�2 �

�t�
d I�2�

	
�115�

It is possible to establish that system fe�4�g � f0g has no solution. Length variations cannot be cancelled
at order four. Therefore, we may conclude that this system does not admit mechanism of order higher
than fd K� g and this mechanism fd K� g is a mechanism of order three (Fig. 7), with:

�
d K�

	
�
�
0, m, 0, 3m� 3

8
m2, 0, m, 0, 3m� 3

8
m2
�t

�116�

This is the same result that was proposed by Kuznetsov (1991b). Our algorithm gives equally the vector
fd I� g associated to mechanism fd K� g, i.e.:
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�
d I�
	
�
�
ÿ 1

4
m2, 0, ÿ 9

4
m2, ÿ 3

8
m2 � 3

8
m3, ÿ 1

2
m2, 0, ÿ 3

2
m2 ÿ 3

4
m3,

3

8
m2 ÿ 3

8
m3
�t

�117�

Therefore, this reticulated system, whose member 6 length is equal to three, admits mechanism vectors
of order one, two and three. These di�erent displacements can be described in the following manner:

. The mechanism fd Kg is a mechanism of order three if:�
d K
	
�
�
d K�1�

	
�
�
d K�2�

	
�
�
DK

	
with kDKkRO3 �118�

where�
d K�1�

	
�
�
d K�2�

	
�
�
0, m, 0, 3m� 3

8
m2, 0, m, 0, 3m� 3

8
m2
�t

, �119�

�
DK

	
� �0, �m1, 0, �m2, 0, �m1, 0, �m2

	t
: �120�

Or with an other writing:�
d K
	

1
�O2 ��

d K�1�
	
�
�
d K�2�

	
�121�

. The mechanism fd Kg is a mechanism of order two if:�
d K
	
�
�
d K�1�

	
�
�
DK

	
with kDKkRO2 and

�
DK�2�

	
6�
�
d K�2�

	
�122�

where�
d K�1�

	
� �0, m, 0, 3m, 0, m, 0, 3m	t

, �123�

�
DK

	
� �0, �m1, 0, �m2, 0, �m1, 0, �m2

	t 6� �d K�2�
	
�
�
0, 0, 0,

3

8
m2, 0, 0, 0,

3

8
m2
�t

: �124�

. The mechanism fd Kg is a mechanism of order one if:�
d K
	
�
�
DK
	

with kDKk � O1 and
�
DK�1�

	
6�
�
d K�1�

	
�125�

Fig. 7. Reticulated system with eight members deformed by its highest mechanism (order three) when the length of member 6 is

equal to three.
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where�
DK

	
� �0, �m1, 0, �m2, 0, �m1, 0, �m2

	t 6� �d K�1�
	
� �0, m, 0, 3m, 0, m, 0, 3m	t

: �126�

Finally, this method gives access to the highest order of mechanisms for an assembly of members, and
provides also the corresponding mechanism vector and those of intermediate orders. It allows to know
all node displacements �fd K� g and fd I� g�� associated with zero length variations until a given order.

6.2.2. Example with twelve members
We are now examining mechanisms of higher order, for a plane reticulated system with 12 members

(Fig. 8) which combines the examples submitted by Tarnai (1989) and Kuznetsov (1991a, 1991b, 1991c).
Length of member 6 is again parametered with ``a'' �a 6� 0).

This system admits three independent mechanisms (i.e. m = 3). Any mechanism fd Kg may be de®ned
as follows with three scalars m1, m2 and m3:�

d K
	
� �0, m1, 0, m2, 0, m3, 0, m1, 0, m2, 0, 0	t �127�

The 12 components of this displacement vector are associated to the 12 dof (2x, 2y, 3x, 3y, 4x, 4y, 6x,
6y, 7x, 7y, 10x, 10y ) of this system.

Orthogonal displacements may be described by the following vector fd Ig:�
d I
	
� fu1, u2, u3, u4, u5, 0, u6,ÿ u2, u7, ÿ u4, u8, u9gt �128�

where u1, u2, u3, u4, u5, u6, u7, u8 and u9 are arbitrary real values.
The ®rst step of the algorithm allows to establish that the system fe�2�g � f0g admits non zero

solutions (i.e. higher order mechanisms) only if parameter ``a'' is strictly positive and less than or equal
to three (i.e. if a 2�0, 3�):�

e�2�
	
� f0g �) 3m21 ÿ 2m1m2 �

�
1ÿ 2

a

�
m22 � 0 �129a�

�
e�2�

	
� f0g �) 3m21 ÿ 4m1m2 � m22 � 2m2m3 ÿ 3m23 � 0 �129b�

Fig. 8. Plane reticulated system with 12 members in its reference con®guration.
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We study, for some particular values of parameter ``a'', the order of mechanisms. For concision
requirements, only mechanism vector solutions fd Kg of Ker A t, are given, but associated vectors fd Ig
(i.e. solution vectors fd Ig of Im A ) are also a product of the algorithm.

6.2.2.1. Case 1: (a = 1). When length of member 6 is equal to one, the reticulated system admits four
distinct mechanisms, whose order is higher than one:

. First mechanism:

m1 � m, m2 � m and m3 � 0 �130�
hence,�

d K�1�
	
� �0, m, 0, m, 0, 0, 0, m, 0, m, 0, 0	t �131�

. Second mechanism:

m1 � m, m2 � m and m3 �
2

3
m �132�

hence,

�
d K�1�

	
�
�
0, m, 0, m, 0,

2

3
m, 0, m, 0, m, 0, 0

�t

�133�

. Third mechanism:

m1 � m, m2 � ÿ3m and m3 � 2m �134�
hence,�

d K�1�
	
� �0, m, 0, ÿ 3m, 0, 2m, 0, m, 0, ÿ 3m, 0, 0

	t �135�
. Fourth mechanism:

m1 � m, m2 � ÿ3m and m3 � ÿ4m �136�
hence,�

d K�1�
	
� �0, m, 0, ÿ 3m, 0, ÿ 4m, 0, m, 0, ÿ 3m, 0, 0

	t �137�

For each of them, following steps of the algorithm have to be proceeded in order to calculate the order
of mechanisms which are generated by this main part of fd K�1�g:

For the ®rst mechanism vector fd K�1�g (i.e. m1 � m, m2 � m and m3 � 0 or Eq. (131)), all equation
systems admit until step 6, a solution (and only one). But at step 7, equation system fe�8�g � f0g has no
solution with respect to U9:�

e�8�
	
6� f0g because e

�8�
11 � U9 � 1

512
m8 and e

�8�
12 � ÿU9 � 1

512
m8 �138�

Consequently, mechanism order for this system is seven. Corresponding mechanism vector fd Kg is given
by mechanism vectors solution of preceding steps, that is:
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�
d K
	

1
�O6 ��

0, m, 0, m� �m2, 0, 2 �m2, 0, m, 0, m� �m2, 0, 0
	t �139�

with

�m2 �
1

8
m2 � 3

128
m4 � 3

256
m5 � 27

1024
m6: �140�

The three other mechanism vectors fd K�1�g, lead to three-order three mechanisms fd Kg �fe�4�g � f0g has
no solution with respect to U9):�

d K
	

1
�O2 �
�
0, m, 0, m� 1

8
m2, 0,

2

3
mÿ 1

12
m2, 0, m, 0, m� 1

8
m2, 0, 0

�t

�141�

�
d K
	

1
�O2 �
�
0, m, 0, ÿ 3mÿ 15

8
m2, 0, 2m� 5

4
m2, 0, m, 0, ÿ 3mÿ 15

8
m2, 0, 0

�t

�142�

�
d K
	

1
�O2 �
�
0, m, 0, ÿ 3mÿ 15

8
m2, 0, ÿ 4mÿ 15

4
m2, 0, m, 0, ÿ 3mÿ 15

8
m2, 0, 0

�t

�143�

Finally, with a = 1 (a being length of member 6) the mechanism of highest order found for this system
is, therefore, a mechanism of order seven.

6.2.2.2. Case 2. (a = 3). When length of member 6 is equal to three, the reticulated system admits two
distinct mechanism vectors of order higher than one (since Eq. (129a) has a double root m2 � 3m1):

. First mechanism:

m1 � m, m2 � 3m and m3 � 2m �144�
hence,�

d K�1�
	
� �0, m, 0, 3m, 0, 2m, 0, m, 0, 3m, 0, 0	t �145�

. Second mechanism:

m1 � m, m2 � 3m and m3 � 0 �146�
hence,�

d K�1�
	
� �0, m, 0, 3m, 0, 0, 0, m, 0, 3m, 0, 0	t �147�

For these two mechanism vectors fd K�1�g, the di�erent steps of algorithm are explicated, since the
existence of a double root gives an in®nity of solutions when the system admits at least one solution. As
previously, we take m1 � 0, for each algorithm step, since only the relative di�erence between the three
independent mechanism vectors has an interest. Consequently, the unknown vector fDKg of Ker At is:�

DK
	
� �0, 0, 0, �m2, 0, �m3, 0, 0, 0, �m2, 0, 0

	t �148�

Firstly, let us consider the ®rst mechanism vector fd K�1�g (i.e. m1 � m, m2 � 3m and m3 � 2m or Eq. (144)).
Equation system fe�3�g � f0g of the second step admits an in®nity of solutions, which can be
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parametered, for example, by �m�2�3 :�
e�3�

	
� f0g �) �m�2�2 �

3

8
m2 � �m�2�3 �149�

hence,�
d K�2�

	
�
�
DK�2�

	
�
�
0, 0, 0,

3

8
m2 � �m�2�3 , 0, �m�2�3 , 0, m, 0,

3

8
m2 � �m�2�3 , 0, 0

�t

�150�

On the other hand, equation system fe�4�g � f0g of the third step does not admit solution (in term of U9)
and this is true, whatever can be the value attributed to parameter �m�2�3 :

8 �m�2�3 ,
�
e�4�

	
6� f0g because e

�4�
11 � U9 � 8m4 and e

�4�
12 � ÿU9 � 8m4 �151�

This mechanism vector fd K�1�g leads to mechanisms fd Kg which are at most of order three and which
can be de®ned as follows:

�
d K
	

1
�O2 �
�
0, m, 0, 3m� 3

8
m2 � �m�2�3 , 0, 2m� �m�2�3 , 0, m, 0, 3m� 3

8
m2 � �m�2�3 , 0, 0

�t

8 �m�2�3 �152�

Let us consider now, the second mechanism vector fd K�1�g (i.e. m1 � m, m2 � 3m and m3 � 0 or Eq. (146)).
Equation system fe�3�g � f0g of the second step, admits an in®nity of solutions, which can be again
parametered by �m�2�3 :�

e�3�
	
� f0g �) �m�2�2 �

3

8
m2 ÿ 3 �m�2�3 �153�

But the value of this parameter �m�2�3 is conditioned by the equation system fe�4�g � f0g of the third step of
the algorithm. In order to have solutions for this last system, �m�2�3 has to be equal to m2=4: In this case,
this system has an in®nity of solutions, which can be then parametered with �m�3�3 :�

e�4�
	
� f0g �) �m�2�3 �

1

4
m2 and �m�3�2 � ÿ

9

4
m3 ÿ 3 �m�3�3 �154�

Solving system fe�5�g � f0g of the fourth step does not require any restriction for this parameter �m�3�3 :
That is why, associated solutions may be parametered with two variables �m�3�3 and �m�4�3 :�

e�5�
	
� f0g �) �m�4�2 �

393

128
m4 ÿ 3

2
m �m�3�3 ÿ 3 �m�4�3 �155�

On the other hand, the equation system fe�6�g � f0g of the ®fth step, admits solutions only if parameter
�m�3�3 is equal to ÿm3: The related in®nity of solutions may be parametered with �m�5�3 (knowing that there
are already parametered with �m�4�3 :�

e�6�
	
� f0g �) �m�3�3 � ÿm3 and �m�5�2 � ÿ

3225

256
m5 ÿ 3

2
m �m�4�3 ÿ 3 �m�5�3 �156�

Whatever can be values of the two parameters �m�4�3 and �m�5�3 , the system fe�7�g � f0g of the sixth step
admits an in®nity of solutions, parametered with a new variable �m�6�3 :�

e�7�
	
� f0g �) �m�6�2 �

16707

1024
m6 � 81

8
m2 �m�4�3 ÿ

3

2
m �m�5�3 ÿ 3 �m�6�3 �157�
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Finally, for any value of the three parameters �m�4�3 , �m�5�3 and �m�6�3 , system fe�8�g � f0g of the seventh step
admits no solution in function of U9:

8 �m�4�3 , �m�5�3 , �m�6�3 ,
�
e�8�

	
6� f0g because e

�8�
11 � U9 � 1

512
m8 and e

�8�
12 � ÿU9 � 1

512
m8 �158�

For this reticulated system (in case of a = 3), highest mechanisms are of order seven. Related
mechanism vectors may be described by the following vector fd Kg, parametered with the three arbitrary
variables �m�4�3 , �m�5�3 and �m�6�3 :�

d K
	

1
�O6 ��

0, m, 0, 3m� �m2, 0, �m3, 0, m, 0, 3m� �m2, 0, 0
	t �159�

with

�m2 � ÿ
3

8
m2 � 3

4
m3 � 585

128
m4 ÿ 3 �m�4�3 ÿ

3225

256
m5 ÿ 3

2
m �m�4�3 ÿ 3 �m�5�3 �

16707

1024
m6 � 81

8
m2 �m�4�3 ÿ

3

2
m �m�5�3

ÿ 3 �m�6�3 , �160�

�m3 �
1

4
m2 ÿ m3 � �m�4�3 � �m�5�3 � �m�6�3 : �161�

Order seven is a relatively high order and, it could be thought to a certain extent that this reticulated
system has a behaviour conditioned by a ®nite mechanism, even if it remains fundamentally di�erent. Is
it possible to di�erentiate very high-order mechanisms and ®nite mechanisms?

7. Finite mechanisms

7.1. Condition of existence of a ®nite mechanism

A reticulated system admits a ®nite mechanism, if there exists a non zero displacement which does not
generate length variations of any order. A ®rst determination method of ®nite mechanisms, for a
kinematically and statically indeterminate system, could be to search if the exact relationship (23) admits
a non zero solution, i.e. if:

9
ÿ�
d K
	
,
�
d I
	�
2 �Ker At ÿ f0g � Im A�,

�A�t
�
d I
	
� 1

2

�
DAd K

�t�
d K
	
� �DAd K

�t�
d I
	
� 1

2

�
DAd I

�t�
d I
	
� f0g �162�

Equations of this system are quadratic, and except for very simple cases, it is di�cult to solve it. Also, it
is interesting to have a more simple method allowing to know if a reticulated system possesses ®nite
mechanisms.

7.2. Utilisation of the algorithm to detect ®nite mechanisms

Our algorithm provides an alternative method for the ®nite mechanism determination, when it is
associated with a stop criterion, which may be based on a conjecture, applicable for most of
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constructive reticulated system. In fact, a ®nite mechanism for an assembly, comprising a ®nite number
of members, may be considered as a mechanism of in®nite order. This explains why a stop criterion is
needed, since the algorithm can not practically be applied until in®nite order.

Stop criterion concerns connected reticulated systems with b members (b = ®nite number) without
sliding node, with at least one ®xed node. Length of members are ®nite, like node distances (i.e. of order
O0). This criterion is based on the following conjecture:
``For a reticulated system satisfying the above conditions and admitting only mechanisms, it may be

asserted that:

8kdk � O1:kekrOr with r � 2E�b=2� �163�
where d is an arbitrary displacement of order one, b is a ®nite number of members, E(b/2) is the integer
part of b/2.''

According to our conjecture, if at step 2E�b=2� ÿ 1 of the algorithm, there always exists displacements
which cancel length variations of order 2E�b=2�, then the reticulated system admits a ®nite mechanism (its
development is known until this order).

This conjecture is based on following non exhaustive arguments:

Firstly, in®nitesimal mechanisms for reticulated systems with two or three members (b = 2 or b =
3), satisfying the above conditions, are associated with length variations of order two. They are
associated with length variations of order four or less, for a system with four members (the given
example in Section 6.1 admits this maximal order, i.e. 8kdk � O1, minkek � O4).
Secondly, if in®nitesimal mechanisms of a b members system are associated with length variations of
maximum order 2E�b=2�, then the way to have a system, without ®nite mechanisms, with length
variations of higher maximum order, would be to add two supplementary members. In fact, length
variation order may be double with two supplementary aligned members. We have so a system, with
b� 2 members, admitting in®nitesimal mechanisms associated with length variations of maximum
order equal to 2E�b=2��1:

Tarnai's example (Tarnai, 1989) (Fig. 9) corresponds to the limit case, of a b members system which
admits an in®nitesimal mechanism associated with length variations exactly equal to 2E�b=2�: This
corresponds, according to the conjecture, to the in®nitesimal mechanism of highest order admissible by
a reticulated connected system with b members, without sliding nodes and with ®nite length of members
and distance between nodes (i.e. order O0).

Fig. 9. Plane reticulated system with b members admitting in®nitesimal mechanism of ``2E�b=2�'' order.
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7.3. Application of the algorithm stop criterion for a simple example

Let us study mechanisms for a plane reticulated system comprising three aligned members (Fig. 10),
whose relative position of nodes 1, 2, 3 and 4 is respectively parametered by a1, a2 and a3 (with a1$0,
a2$0 and a3$0).

Study of equilibrium matrix [A ] of this reticulated system in its reference state, gives access to a
mechanism basis fd Kg and an orthogonal displacement basis fd Ig:

�A� �

2664
a1 ÿa2 0
0 0 0
0 a2 ÿa3
0 0 0

3775
8>><>>:
2x
2y
3x
3y

9>>=>>; �)
�
d K1

	
�

8>><>>:
0
1
0
0

9>>=>>;,
�
d K2

	
�

8>><>>:
0
0
0
1

9>>=>>; and
�
d I1

	
�

8>><>>:
1
0
0
0

9>>=>>;,

�
d I2

	
�

8>><>>:
0
0
1
0

9>>=>>;
�164�

These mechanisms are described with the following vector fd Kg:�
d K
	
� m1

�
d K1

	
� m2

�
d K2

	
� �0, m1, 0, m2	t �165�

While, orthogonal displacements can be described by vector fd Ig:�
d I
	
� u1

�
d I1

	
� u2

�
d I2

	
� fu1, 0, u2, 0gt �166�

According to our conjecture, this three member system admits a ®nite mechanism, if at step 1 (i.e.
2E�b=2� ÿ 1 � 21 ÿ 1 � 1� of the algorithm, it exists non zero displacements which cancel order two length
variations, i.e.:�

d K
	
� finite mechanism if 9

��
d K�1�

	
,
�
d I�2�

	�
2 �Ker At ÿ f0g � Im A�:

�
e�2�

	
� f0g �167�

So, the ®rst step of the algorithm has solely to be applied to determine if the system admits ®nite
mechanisms or only in®nitesimal mechanisms of order one, when application conditions for the stop
criterion are satis®ed (particularly ®nite distances between nodes).

Then, vector fe�2�g (length variation of order two) is calculated:

Fig. 10. Plane reticulated system with three aligned members.
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�
e�2�

	
� �A�t

�
d I
	
� 1

2

�
DAd K

�t�
d K
	
�
�
a1u1 � 1

2
m21, ÿ a2u1 � a2u2 � 1

2
�m1 ÿ m2�2,

ÿ a3u2 � 1

2
m22

�t
�168�

System fe�2�g � f0g admits a non zero solution, only if the equation admits also a non zero solution�
e�2�

	
� f0g �) m21

a1
� �m1 ÿ m2�2

a2
� m22

a3
� 0 �169�

It can be already deduced that there is no non zero solution in case of same sign parameters a1, a2 and
a3. Consequently, if parameters a1, a2 and a3 are, all together, either positive or negative (which leads to
the same geometry) then the reticulated system (Fig. 11(a) possesses only in®nitesimal mechanisms of
order one:

Fig. 11. Type of mechanisms of the system with three aligned members according to the relative position of its nodes.
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If a1 > 0, a2 > 0, a3 > 0 or if a1 < 0, a2 < 0, a3 < 0 �)
�
e�2�

	
6� f0g 8�m1, m2� 6� �0, 0� �170�

According to symmetry statements, other cases can be related to the study of the two following cases:

a1 > 0, a2 > 0, a3 < 0 and a1 > 0, a2 < 0, a3 > 0 �171�
Preceding Eq. (169) has a non zero solution, only if its reduced discriminant D 0 is positive or null:

m21
a1
� �m1 ÿ m2�2

a2
� m22

a3
�
�
1

a1
� 1

a2

�
m21 ÿ

2m1m2
a2
�
�
1

a2
� 1

a3

�
m22 � 0�)D 0 � ÿa1 � a2 � a3

a1a2a3
�172�

In fact, for the two studied cases, the product a1a2a3 is strictly negative, and the reduced discriminant D 0

is of the same sign as the sum of the three parameters:

D 0r0 , a1 � a2 � a3r0 �173�
When this condition is satis®ed (i.e. when a1 � a2 � a3r0), there exists non zero displacements such as
length variations are equal to zero until order two, and consequently, the system admits mechanisms
with order higher than one. That is why, when application conditions are satis®ed, it is not necessary to
proceed further calculations, since, according to the stop criterion, the system admits a ®nite mechanism
(Fig. 11(b) and (c)). On the other hand, if the relationship is not veri®ed, then the system admits only
order one in®nitesimal mechanisms (Fig. 11(b) and (c)).

8. Comments

Thanks to geometrical or energetic characterisation it may be simply determined if in®nitesimal
mechanisms are of ®rst order or order higher than one. What we call energetic characterisation test is
equivalent to the one given by Calladine and Pellegrino (1991a, 1991b, 1992)). However, geometrical test
which is the ®rst step of the submitted algorithm, provides also the displacements of the nodes
associated with mechanisms of order higher than one.

Moreover, one has now an analytic matrix method of determination of order for any mechanism of a
reticulated system (even when some lengths are parametered). When compared with the method given
by Tarnai (1989), this method has the advantage to give a direct access to solution displacements. It has
also the advantage, when compared with the method submitted by Salerno (1992), to give solution
displacements in analytic form and not in numerical form. Moreover, some other advantages of our
method may be underlined. We work directly on member length variations {e }, not on the deformation
energy for which {e } appears under a quadratic form, which requires to double the number of necessary
developments. We also use explicitly basis of vectorial subspaces Ker A t and Im A, and consequently,
for each step we deal with a ®xed number of vectors; with Salerno's method the number of vectors is
greater at each step (m, m�m� 1�=2, . . .).

The relative simplicity of our method (that can always lead to the resolution of linear equation
systems) allows to process, without the assistance of a computer, most of the kinematically
indeterminate and relatively complex systems. For truly complex assemblies (admitting many degrees of
freedom and/or members), a small program can be realised.

In summary, the submitted algorithm possesses a double interest: it determines the order of a given
mechanism and also gives all the distinct mechanism vectors for a reticulated system. Lastly, with the
submitted stop criterion, this algorithm identi®es ®nite mechanisms.
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